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ABSTRACT 
 

In this research, the partially ordered monoid (simple pomonoid) full transformations of a poset 𝒪(𝑋) is studied, and some related properties are examined. We 
show that when the poset 𝑋  is not totally ordered, the pomonoid of all decreasing singular self-maps of a poset 𝑋 (denoted by 𝑆−) and the pomonoid of all 
increasing singular self-maps of a poset 𝑋  (denoted by 𝑆+) may not be generally isomorphic. Some specific partial ordered relations are considered, and the 
cardinalities of 𝑆− and 𝑆+ under these relations are found. The set of fixed, decreasing, and increasing points of mapping 𝛼 in 𝒪(𝑋) are also investigated. 
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1. Introduction and Preliminaries 

The semigroup of full transformations on a set has been studied 
extensively, and many research papers have been published on this 
subject, such as Howie (1966) and Howie (1971). The semigroup 
order-preserving (monotone) full transformations of a totally ordered 
set has also been investigated thoroughly, and substantial literature 
exists on this subject, such as Howie and Schein (1973), Schein 
(1975), and Kemprasit and Changphas (2000). The semigroup of all 
singular self-maps of a totally ordered set has also been studied in 
Gomes and Howie (1987), Gomes and Howie (1992), and Umar 
(1992a). As such, it is reasonable to present a new approach to the 
semigroup order-preserving full transformations of a totally ordered 
set based on order relations that are in increasing and decreasing 
orders. Therefore, in the 1990s, the study of semigroup order-
increasing full transformations of a totally ordered set and the 
semigroup order-decreasing full transformations of a totally ordered 
set were investigated, see Umar (1992a), Umar (1992b), and Umar 
(1996). All of this research studied the order-preserving full 
transformations of a totally ordered set as a semigroup. Sohail (2010) 
considered the pomonoid full transformations of a poset in 
connection with the ordered representation of a pomonoid. The 
category of pomonoids has been considered more recently by many 
researchers, such as Gould and Shaheen (2010), Al Subaiei and 
Renshaw (2016), Ahanger and Shah (2020), and Al Subaiei (2021). 
This paper aims to study the order-preserving full transformations of 
a poset as a pomonoid without limiting the order on the poset for the 
total order relation. 
A set 𝑋 with a partial order relation is known as a poset. A map 𝑓: 𝑋 
⟶  𝑌  where 𝑋  and 𝑌  are posets is called a monotone (order-
preserving) whenever 𝑥 ≤ 𝑥′ then 𝑥𝑓 ≤ 𝑥′𝑓 , where 𝑥, 𝑥′ ∈ 𝑋  and 
𝑥𝑓, 𝑥′𝑓 in 𝑌. Throughout the study, for any map 𝑓, 𝑓 will be written 
on the right of its argument as 𝑥𝑓, and the set of images of 𝑓 will be 
denoted by 𝐼𝑚𝑔 𝑓. 
A semigroup (resp. monoid) with a partial order relation is called a 
posemigroup (resp. pomonoid) whenever the partial order relation is 
compatible with the binary operation. This indicates the following: 
consider the posemigroup 𝑇 and the partial order relation ≤, when 
𝑡 ≤ 𝑡′, then 𝑡𝑡′′ ≤ 𝑡′𝑡′′𝑎𝑛𝑑 𝑡′′𝑡 ≤ 𝑡′′𝑡′ for all 𝑡′′ ∈ 𝑇. An element 
𝑡 in a semigroup 𝑇 is an idempotent if it satisfies the condition 𝑡2 =

𝑡. Readers can refer to Howie (1995) and Kilp et al. (2000) for basic 
information and terminology on semigroups and monoids and Sohail 
(2010) and Al Subaiei (2014) for posemigroups and pomonoids. 
A full transformation of a set 𝑋 is the set of all maps from 𝑋 to 𝑋 and 
is usually denoted by 𝒯(𝑋). It is well known that 𝒯(𝑋) is a monoid. 
The order-preserving full transformations of a poset 𝑋 is the set of all 
monotone maps from 𝑋 to 𝑋 and is usually denoted by 𝒪(𝑋). This 
set 𝒪(𝑋) is a pomonoid where the binary relation is composition and 
the partial order relation is a point-wise order (for any 𝑓, 𝑔 ∈ 𝒪(𝑋), 
𝑓 ≤ 𝑔  whenever 𝑥𝑓 ≤ 𝑥𝑔  for all 𝑥 ∈ 𝑋 ). It is clear that the 
pomonoid 𝒪(𝑋) is a submonoid of 𝒯(𝑋) . The pomonoid 𝒪(𝑋) is 
known also as the pomonoid full transformations of a poset 𝑋. 
Let 𝑋 be a finite poset. The subsemigroup of all singular self-maps of 
𝑋 is  

 𝑆𝑖𝑛𝑔 = {𝛼 ∈ 𝒪(𝑋): |𝐼𝑚𝑔𝛼| ≤ |𝑋| − 1}. 
It is clear that this subsemigroup with the point-wise order is a 
posemigroup. The set of all decreasing singular self-maps of 𝑋  is 

 𝑆− = {𝛼 ∈ 𝑆𝑖𝑛𝑔: ∀𝑥 ∈ 𝑋 , 𝑥𝛼 ≤ 𝑥} 
while the set of all increasing singular self-maps of 𝑋  is 

 𝑆+ = {𝛼 ∈ 𝑆𝑖𝑛𝑔: ∀𝑥 ∈ 𝑋 , 𝑥𝛼 ≥ 𝑥}. 

The set of shifting points of the mapping 𝛼 in 𝒪(𝑋) is  
 𝑆(𝛼) = {𝑥 ∈ 𝑋 : 𝑥𝛼 ≠ 𝑥} 
and the cardinality of this set is called shift of 𝛼, usually denoted by 
𝑠(𝛼). The defect of 𝛼  in 𝒪(𝑋) is the cardinality of the set 𝑍(𝛼) =

𝑋\𝐼𝑚𝑔 𝛼. The set of fixed points of mapping 𝛼 in 𝒪(𝑋) is defined 
as:  
 𝐹(𝛼) = {𝑥 ∈ 𝑋 : 𝑥𝛼 = 𝑥}. 
The cardinality of the set of fixed points of 𝛼, 𝐹(𝛼), is denoted by 
𝑓(𝛼).  

2. Results 

The primary objective of this work is to study the pomonoid full 
transformations of a finite poset 𝑋 ,  𝒪(𝑋) . The aim is to examine 
some known results for the semigroup full transformations of a 
totally ordered set as in Umar (1992a) on the pomonoid full 
transformations of a poset, where the order on the poset is any partial 
order relation. As the analog of most properties in the category of 
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monoids has two versions in the category of pomonoids, the first with 
" = " and the other with " ≤ ", this will also apply to the set of fixed 
points. Therefore, the ordered versions will be as follows: 

𝐹(𝛼)< = {𝑥 ∈ 𝑋: 𝑥𝛼 ≤ 𝑥} 
and  

𝐹(𝛼)> = {𝑥 ∈ 𝑋: 𝑥𝛼 ≥ 𝑥}. 

The poset 𝐹(𝛼)< will be called the set of decreasing fixed points of 
mapping 𝛼, while the poset 𝐹(𝛼)> will be called the set of increasing 
fixed points of mapping 𝛼. The following result is straightforward to 
prove. 

2.1. Lemma: 
Let 𝛼 ∈ 𝒪(𝑋). Then,  
1. 𝐹(𝛼) = 𝐹(𝛼)< ∩ 𝐹(𝛼)>. 
2. When 𝛼 ∈ 𝑆− then 𝐹(𝛼)< = 𝑋. 
3. When 𝛼 ∈ 𝑆+ then 𝐹(𝛼)> = 𝑋.  

2.2. Theorem: 
The set 𝑆− and 𝑆+ are posemigroups. 
Proof: It is obvious that 𝑆− and 𝑆+ are subsemigroups of 𝑆𝑖𝑛𝑔. We 
want to prove that 𝑆−  and 𝑆+  are posemigroups; specifically, we 
want to prove that the partial order relation is compatible with the 
binary operation. Suppose that 𝛼, 𝛽 ∈ 𝑆− and 𝛼 ≤ 𝛽. So, for all 𝑥 ∈
𝑋 , we have 𝑥𝛼 ≤ 𝑥𝛽 . Then, for any 𝛾 ∈ 𝑆− , we know from the 
definition of 𝑆−  that 𝛾 ∈ Sing . Hence, 𝛾 ∈  𝒪(𝑋) , and so we get 
𝑥𝛼𝛾 ≤ 𝑥𝛽𝛾. Thus, 𝛼𝛾 ≤ 𝛽𝛾. Now, since 𝑥𝛾 ∈ 𝑋 and 𝑥𝛼 ≤ 𝑥𝛽 for 
all 𝑥 ∈ 𝑋 , we get 𝑥𝛾𝛼 ≤ 𝑥𝛾𝛽 . Thus, 𝛾𝛼 ≤ 𝛾𝛽 . Therefore, 𝑆−  is a 
posemigroup. By using a similar process, we can show that 𝑆+ is also 
a posemigroup. ∎ 
 
Clearly, we can obtain the following corollary. 

2.3. Corollary: 
The set 𝑆− and 𝑆+ are subpomonoids of 𝑆𝑖𝑛𝑔. 
It is known from Lemma 1.1 of Umar (1992b) that when the order of 
𝑋 is totally ordered, then 𝑆− and 𝑆+ are isomorphic; however, this is 
not true for any partial order relation as the following example shows. 

2.4. Example: 
Let 𝑋 = {𝑎, 𝑏, 𝑐} be a poset with a partial order relation defined as: 

Figure 1: The partial order relation of the poset 𝑿  

  

Then, 𝒪(𝑋) = {𝛾1 = (
𝑎 𝑏 𝑐
𝑎 𝑏 𝑐 ),  𝛾2 = (

𝑎 𝑏 𝑐
𝑎 𝑎 𝑎 ), 

𝛾3 = (
𝑎 𝑏 𝑐
𝑎 𝑎 𝑐 ),  𝛾4 = (

𝑎 𝑏 𝑐
𝑏 𝑏 𝑐 ),  𝛾5 =

(
𝑎 𝑏 𝑐
𝑏 𝑏 𝑏 ),  𝛾6 = (

𝑎 𝑏 𝑐
𝑏 𝑏 𝑎 ),  𝛾7 = (

𝑎 𝑏 𝑐
𝑏 𝑎 𝑐 ), 

𝛾8 = (
𝑎 𝑏 𝑐
𝑐 𝑐 𝑐 ),  𝛾9 = (

𝑎 𝑏 𝑐
𝑎 𝑐 𝑐 ),  𝛾10 =

(
𝑎 𝑏 𝑐
𝑏 𝑐 𝑐 ), 𝛾11 = (

𝑎 𝑏 𝑐
𝑐 𝑏 𝑐 ), 𝛾12 = (

𝑎 𝑏 𝑐
𝑐 𝑎 𝑐 )}.  

The subset of decreasing singular self-maps of 𝑋  is 𝑆− =
{𝛾8, 𝛾9, 𝛾11}, and the subset of increasing singular self-maps of 𝑋 is 
𝑆+ = ∅. It is clear that these are not isomorphic.  

2.5. Lemma: 
Let 𝑋 be a poset. Then,  
1. If 𝑎𝑖  is not comparable with any elements, then for any 𝛼 ∈

𝑆− , 𝑎𝑖𝛼 = 𝑎𝑖. 
2. If 𝑎𝑖  is not comparable with any elements, then for any 𝛽 ∈

𝑆+ , 𝑎𝑖𝛽 = 𝑎𝑖. 
3. If 𝑋 has a minimum element 𝑎, then for any 𝛼 ∈ 𝑆− , 𝑎𝛼 = 𝑎. 
4. If 𝑋 has a maximum element 𝑏, then for any 𝛽 ∈ 𝑆+, 𝑏𝛽 = 𝑏. 

Proof: 
1. Suppose that 𝑎𝑖  is not comparable with any element and 𝛼 ∈

𝑆−. From the definition of 𝑆− , we have 𝑎𝑖𝛼 ≤ 𝑎𝑖 . Since 𝑎𝑖  is not 
comparable with any element and the relation on 𝑋 is a partial 
order relation, then 𝑎𝑖𝛼 must be equal to 𝑎𝑖 .  

2. The proof is obtained by using a similar argument to case (1).  
3. Suppose that 𝑋 has a minimum element 𝑎. From the definition of 

𝑆− 𝑎𝛼 ≤ 𝑎.  Since 𝑎 is a minimum element, then 𝑎 ≤ 𝑎𝛼 ≤ 𝑎. So, 
as the relation on 𝑋 is a partial order relation, then 𝑎𝛼 must be 
equal to 𝑎. 

4. The proof is obtained by using a similar argument to case (3). 
∎ 

In the following results, we will concentrate on some particular partial 
order relations and examine some related properties of the full 
transformations on the pomonoid full transformations of a poset.  

2.6. Theorem: 
Let 𝑋 = {𝑎1, 𝑎2, … , 𝑎𝑛, 𝑎} be a finite set with a partial order relation 
≤1 defined such that 

Figure 2: The poset 𝑿 with ≤𝟏 

 
Then, 𝑆+ = ∅.  

Proof: Suppose that 𝛼 ∈ 𝑆+ . Then, 𝑎𝑖𝛼 ≥ 𝑎𝑖  and 𝑎𝛼 ≥ 𝑎  where 
1 ≤ 𝑖 ≤ 𝑛. Since there are no elements greater than 𝑎𝑖 , then 𝑎𝑖𝛼 =
𝑎𝑖 . From Lemma 2.5, we get that 𝑎𝛼 = 𝑎. Hence, 𝛼 will be the identity 
map and 𝛼 ∉ 𝑆𝑖𝑛𝑔. Since this is a contradiction, there is no 𝛼 in 𝑆+. 
∎ 

2.7. Theorem: 
Let 𝑋 = {𝑎1, 𝑎2, … , 𝑎𝑛, 𝑎} be a finite set with a partial order relation 
≤2 such that 

Figure 3: The poset 𝑿 with ≤𝟐  

 
Then, 𝑆− = ∅.  
The proof has a similar argument to the proof of Theorem 2.6. 

2.8. Proposition: 
Let 𝑋 be a finite poset.  
1. When 𝑋 = {𝑎1, 𝑎2, … , 𝑎𝑛, 𝑎} is a poset with the partial order 

≤1, then for any 𝛼 ∈ 𝑆− 𝑎𝑖𝛼 ∈ {𝑎, 𝑎𝑖}, for all 𝑖 = 1, 2, … , 𝑛. 
2. When 𝑋 = {𝑎1, 𝑎2, … , 𝑎𝑛, 𝑏} is a poset with the partial order 

≤1, then for any 𝛽 ∈ 𝑆+ 𝑎𝑖𝛽 ∈ {𝑏, 𝑎𝑖}, for all 𝑖 = 1, 2, … , 𝑛. 

Proof:  
1. Suppose that 𝛼 ∈ 𝑆− . Hence, 𝑎𝑖𝛼 ≤ 𝑎𝑖  and 𝑎𝛼 ≤ 𝑎 . 

Therefore, 𝑎𝑖𝛼 ∈ {𝑎𝑖 , 𝑎}.  
2. The proof is obtained by using a similar procedure to case (1). 

∎ 

2.9. Theorem: 
Let 𝑋 be a finite poset.  
1. When 𝑋 = {𝑎1, 𝑎2, … , 𝑎𝑛 , 𝑎} is a poset with the partial order ≤1, 



28  
 

 

 

 Al Subaiei, B. (2022). Examples of pomonoids of full transformations of a poset. The Scientific Journal of King Faisal University: Basic and Applied Sciences, 23(1), 26–9. DOI: 10.37575/b/sci/210068 

then |𝑆−| = 𝐶(𝑛, 1) + 𝐶(𝑛, 2) + ⋯ + 𝐶(𝑛, 𝑛) =  
𝑛 (𝑛+1)

2
. 

2. When 𝑋 = {𝑎1, 𝑎2, … , 𝑎𝑛 , 𝑏} is a poset with the partial order ≤2, 
then |𝑆+| = 𝐶(𝑛, 1) + 𝐶(𝑛, 2) + ⋯ + 𝐶(𝑛, 𝑛) =  

𝑛 (𝑛+1)

2
. 

Proof:  
1. From Proposition 2.8, we know that for any 𝛼 ∈ 𝑆− , 𝑎𝑖𝛼 ∈

{𝑎𝑖 , 𝑎}. Also, from Lemma 2.5 (3), we get that 𝑎𝛼 = 𝑎. When 
all the elements of 𝑋 under 𝛼 have an image equal to 𝑎, then 
there is only one element in 𝑆− having the form 𝐶(𝑛, 𝑛) = 1. 

When the 𝑛 − 1 elements of the 𝑎𝑖  have an image equal to 𝑎 
under 𝛼 , then there are 2  different elements in 𝑆−  with the 
form 𝐶(𝑛, 𝑛 − 1) = 2. So by using this sequence, we will end 
when only one element of the 𝑎𝑖  has an image equal to 𝑎 under 
𝛼 and 𝑛 different elements in 𝑆− have the form 𝐶(𝑛, 1) = 𝑛. 
Therefore, the total number of elements in 𝑆−  is equal to 
𝐶(𝑛, 1) + 𝐶(𝑛, 2) + ⋯ + 𝐶(𝑛, 𝑛) . This formula is equal to 
the 𝑛th triangular number, which has the form 

𝑛 (𝑛+1)

2
. 

2. The second statement can be proved by using a similar 
argument to (1). ∎ 

2.10. Example: 
In Example 2.4, |𝑆−| = 𝐶(2,1) + 𝐶(2,2) = 2 + 1 = 3.  

2.11. Theorem: 
Let 𝑋 be a poset.  
1. If 𝑋 = {𝑎1, 𝑎2, … , 𝑎𝑛, 𝑎} is a poset with the partial order ≤1, 

then the number of 𝛼 that satisfies 𝐹(𝛼)< = 𝐹(𝛼)> is 𝑛𝑛 . 
2. If 𝑋 = {𝑎1, 𝑎2, … , 𝑎𝑛, 𝑏} is a poset with the partial order ≤2, 

then the number of 𝛼 that satisfies 𝐹(𝛼)< = 𝐹(𝛼)> is 𝑛𝑛 .  

Proof:  
1. Suppose that 𝑋  has the order ≤1  and 𝛼  satisfies 𝐹(𝛼)< =

𝐹(𝛼)>. Since 𝑎 is the only element that is comparable with all 
other elements, then 𝑎𝛼 = 𝑎. For the other element 𝑎𝑖 , where 
1 ≤ 𝑖 ≤ 𝑛, 𝑎𝑖𝛼 ≠ 𝑎, if 𝑎𝑖𝛼 = 𝑎, this means that 𝑎𝑖 ∈ 𝐹(𝛼)< 
and 𝑎𝑖 ∉ 𝐹(𝛼)> , and this is a contradiction. Hence, each 
𝑎𝑖𝛼 ∈ {𝑎1, 𝑎2, … , 𝑎𝑛} . Moreover, 𝑎𝑖𝛼  has 𝑛  options. 
Therefore, the number of 𝛼  that satisfies 𝐹(𝛼)< = 𝐹(𝛼)>  is 
𝑛𝑛 . 

2. The second statement can be proved by using a similar 
argument to (1). ∎ 

Consider the finite poset 𝑌 = {𝑎1, 𝑎2, … , 𝑎𝑗}  with a total order 
relation defined as 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑗  . Define the map 𝜌: 𝑌 → 𝐼 
where 𝐼 = {1,2, … , 𝑗} is a subset of the natural number. Then, it is 
known that 𝜌 is an order embedding map. 
The poset 𝑌 = {𝑎1, 𝑎2, … , 𝑎𝑗} with a total order relation 𝑎1 < 𝑎2 <
⋯ < 𝑎𝑗  can be extended to the poset 𝑌′ =

{𝑎1, 𝑎2, … , 𝑎𝑗 , 𝑎𝑗+1, … , 𝑎𝑛}  with a partial order relation ≤3  such 
that 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑗  where other elements are not comparable 
with the rest of the elements.  

Figure 4: The poset 𝒀′ with ≤𝟑  

 
It is clear that the partial order relation ≤3 on 𝑌′ is not a total order 
relation. 

Also, the poset 𝑌 = {𝑎1, 𝑎2, … , 𝑎𝑗} with a total order relation 𝑎1 <
𝑎2 < ⋯ < 𝑎𝑗  can be extended to the poset 𝑌′ =
{𝑎1, 𝑎2, … , 𝑎𝑗 , 𝑎𝑗+1, … , 𝑎𝑛}  with a partial order relation ≤4  such 
that 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑗  and 𝑎𝑗+1 < 𝑎𝑗+2 < ⋯ < 𝑎𝑛.  

Figure 5: The poset 𝒀′ with ≤𝟒 

 
It is obvious that the partial order relation ≤4 on 𝑌′ is not a total order 
relation. 
In the following two results, we generalize the result of Lemma 1.1 in 
Umar (1992b) to the poset 𝑌′ when the partial order relation is ≤3 
first, and then when the partial order relation is ≤4 . The idea of the 
proof is inspired by Lemma 2.1.1 in Umar (1992a) and Lemma 1.1 in 
Umar (1992b). 

2.12. Theorem: 
Let 𝑌′ = {𝑎1, 𝑎2, … , 𝑎𝑗 , 𝑎𝑗+1, … , 𝑎𝑛}  be a poset with the partial 
ordered relation ≤3 . Then, 𝑆−  and 𝑆+  are isomorphic 
subposemigroup of 𝑆𝑖𝑛𝑔𝑌′.  
Proof: From Theorem 2.2, we know that 𝑆−  and 𝑆+  are 
posemigroups. Now, we want to prove that there exists an order 
isomorphism map between the two posemigroups 𝑆−  and 𝑆+ . So, 
define the map 𝑓: 𝑆− → 𝑆+ by 𝛼𝑓 = 𝛼∗, where 

(i) 𝑎𝑖𝛼∗ = 𝑎𝑖 = 𝑎𝑖𝛼 when 𝑗 + 1 ≤ 𝑖 ≤ 𝑛, and  
(ii) 𝑎𝑖𝛼∗ = 𝑎𝑗−{𝑎(𝑗−𝑖+1)𝛼𝜌}+1 when 1 ≤ 𝑖 ≤ 𝑗 where 𝑎𝑖𝜌 = 𝑖 

where 𝛼 ∈ 𝑆− and 𝛼∗ ∈ 𝑆+.  
It is clear that 𝛼∗ ∈ 𝑆+, since the following statements are satisfied: 
(i) when 𝑗 + 1 ≤ 𝑖 ≤ 𝑛 , 𝑎𝑖𝛼∗ = 𝑎𝑖  from Lemma 2.5. Hence, 
𝑎𝑖𝛼∗ ≥ 𝑎𝑖,  and 
(ii) when 1 ≤ 𝑖 ≤ 𝑗 , we have 𝑎𝑖𝛼∗ = 𝑎𝑗−{𝑎(𝑗−𝑖+1)𝛼𝜌}+1 ≥
𝑎𝑗−{𝑎(𝑗−𝑖+1)𝜌}+1 = 𝑎𝑗−(𝑗−𝑖+1)+1 = 𝑎𝑖. Hence, 𝑎𝑖𝛼∗ ≥ 𝑎𝑖. 
First, we will prove that the map 𝑓 is order embedding. Suppose that 
𝛼 ≤ 𝛽 . By using the fact that 𝜌  is order embedding, we have the 
following: 
(i) when 𝑗 + 1 ≤ 𝑖 ≤ 𝑛, we have: 𝛼 ≤ 𝛽 ⇔ 𝑎𝑖 = 𝑎𝑖𝛼 ≤ 𝑎𝑖𝛽 = 𝑎𝑖  
⇔ 𝑎𝑖𝛼∗ = 𝑎𝑖 ≤ 𝑎𝑖 = 𝑎𝑖𝛽∗ ⇔ 𝛼𝑓 ≤ 𝛽𝑓.  
(ii) when 1 ≤ 𝑖 ≤ 𝑗, we have: 
𝛼 ≤ 𝛽  ⇔  𝑎𝑖𝛼 ≤ 𝑎𝑖𝛽  ⇔  𝑎(𝑗−𝑖+1)𝛼 ≤ 𝑎(𝑗−𝑖+1)𝛽  ⇔ 
𝑎(𝑗−𝑖+1)𝛼𝜌 ≤ 𝑎(𝑗−𝑖+1)𝛽𝜌  ⇔  𝑗 − {𝑎(𝑗−𝑖+1)𝛼𝜌} + 1 ≤ 𝑗 −
{𝑎(𝑗−𝑖+1)𝛽𝜌} + 1  ⇔  𝑎𝑗−{𝑎(𝑗−𝑖+1)𝛼𝜌}+1𝜌 ≤ 𝑎𝑗−{𝑎(𝑗−𝑖+1)𝛽𝜌}+1𝜌  ⇔ 
𝑎𝑗−{𝑎(𝑗−𝑖+1)𝛼𝜌}+1 ≤ 𝑎𝑗−{𝑎(𝑗−𝑖+1)𝛽𝜌}+1 ⇔ 𝑓(𝛼) ≤ 𝑓(𝛽).  
Since 𝑓  is order embedding, and from Al Subaiei and Renshaw 
(2016), we see that 𝑓 is well defined. Now, we want to prove that 𝑓 
is a morphism. To show that, suppose 𝛼𝑓𝛽𝑓 = 𝛼∗𝛽∗. Then, we have 
the following cases: 
(i) when 𝑗 + 1 ≤ 𝑖 ≤ 𝑛 , we have 𝑎𝑖𝛼𝑓𝛽𝑓  = 𝑎𝑖𝛼∗𝛽∗ = 𝑎𝑖𝛽∗ =
𝑎𝑖 = 𝑎𝑖(𝛼𝛽)∗ = 𝑎𝑖(𝛼𝛽)𝑓.  
(ii) when 1 ≤ 𝑖 ≤ 𝑗 , we have 𝑎𝑖𝛼𝑓𝛽𝑓  = 𝑎𝑖𝛼∗𝛽∗ =
𝑎𝑗−{𝑎(𝑗−𝑖+1)𝛼𝜌}+1𝛽∗ = 𝑎𝑗−{𝑎(𝑗−[𝑗−{𝑎(𝑗−𝑖+1)𝛼𝜌}+1]+1)𝛽𝜌}+1  =

𝑎𝑗−{𝑎{𝑎(𝑗−𝑖+1)𝛼𝜌𝛽𝜌}+1 = 𝑎𝑗−{𝑎(𝑗−𝑖+1)𝛼𝛽𝜌}+1  = 𝑎𝑖(𝛼𝛽)∗ =
𝑎𝑖(𝛼𝛽)𝑓 . It is clear from the definition of 𝑓  that 𝑓  is surjective. 
Therefore, 𝑓  is an order isomorphism, and so 𝑆−  and 𝑆+  are 
isomorphic subposemigroups of Sing𝑌′. ∎ 
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2.13. Theorem: 
Let 𝑌′ = {𝑎1, 𝑎2, … , 𝑎𝑗 , 𝑎𝑗+1, … , 𝑎𝑛}  be a poset with the partial 
order relation ≤4 . Then, 𝑆−  and 𝑆+  are isomorphic 
subposemigroups of 𝑆𝑖𝑛𝑔𝑌′.  
The proof has a similar procedure to the proof of Theorem 2.12 above 
and Lemma 1.1 in Umar (1992b). We simply need to define the map 
𝑓: 𝑆− → 𝑆+ by 𝑓(𝛼) = 𝛼∗ as the following: 
(i) 𝑎𝑖𝛼∗ = 𝑎𝑛−{𝑎(𝑛−𝑖+1)𝛼𝜌}+1 when 1 ≤ 𝑖 ≤ 𝑗. 

(ii) 𝑎𝑖𝛼∗ = 𝑎𝑗−{𝑎(𝑗−𝑖+1)𝛼𝜌}+1 when 𝑗 + 1 ≤ 𝑖 ≤ 𝑛. 
where 𝑎𝑖𝜌 = 𝑖. 

2.14. Proposition: 
Let 𝑌′ = {𝑎1, 𝑎2, … , 𝑎𝑗 , 𝑎𝑗+1, … , 𝑎𝑛}  be a poset with the partial 
order relation ≤3. Then,  
1. For any 𝛼 ∈ 𝑆− , then 𝑎𝑖 ∉ 𝑍(𝛼)  where 𝑗 + 1 ≤ 𝑖 ≤ 𝑛  and 

1 ≤ defect of 𝛼 ≤ 𝑗. 
2. For any 𝛼 ∈ 𝑆+ , then 𝑎𝑖 ∉ 𝑍(𝛼)  where 𝑗 + 1 ≤ 𝑖 ≤ 𝑛  and 

1 ≤ defect of 𝛼 ≤ 𝑗.  
Proof.  
1. From Lemma 2.5, we know that 𝑎𝑖𝛼 = 𝑎𝑖  when 𝑗 + 1 ≤ 𝑖 ≤

𝑛. Hence, 𝑎𝑖 ∈ 𝐼𝑚𝑔 𝑓. Therefore, 𝑎𝑖 ∉ 𝑍(𝛼). Since there are 
𝑛 − 𝑗 elements not in 𝑍(𝛼), then 1 ≤ 𝑓(𝛼) ≤ 𝑗.  

2. The proof of this case has a similar argument to case (1). ∎ 

2.15. Remark: 
It is known from Lemma 2.3.1 in Umar (1992a) that 𝐹(𝛼𝛽) =
𝐹(𝛼) ∩ 𝐹(𝛽).  However, this is not true when the partial order 
relation is not totally ordered. In example 2.4, we have 𝐹(𝛾4) ∩
𝐹(𝛾7) = {𝑏, 𝑐} ∩ {𝑐} = {𝑐} ≠ 𝐹(𝛾4𝛾7) = 𝐹(𝛾3) = {𝑎, 𝑐} . Also, 
this result does not hold for the ordered version of the set of fixed 
points, which is the set of decreasing fixed points of 𝛼 and the set of 
increasing fixed points of 𝛼. Furthermore, in Example 2.4, we have 
𝐹(𝛾9)< ∩ 𝐹(𝛾7)< = {𝑎, 𝑏, 𝑐} ∩ {𝑐} = {𝑐} ≠ 𝐹(𝛾9𝛾7)< =
𝐹(𝛾10)< = {𝑏, 𝑐}  and 𝐹(𝛾2)> ∩ 𝐹(𝛾6)> = {𝑎, 𝑐} ∩ {𝑏, 𝑐} =
{𝑐} ≠ 𝐹(𝛾2𝛾6)> = 𝐹(𝛾5)> = {𝑏, 𝑐}. Therefore, in the pomonoid 
full transformations of a poset, we have the following general cases: 

 𝐹(𝛼𝛽) ≠ 𝐹(𝛼) ∩ 𝐹(𝛽) 
 𝐹(𝛼𝛽)< ≠ 𝐹(𝛼)< ∩ 𝐹(𝛽)< 
 𝐹(𝛼𝛽)> ≠ 𝐹(𝛼)> ∩ 𝐹(𝛽)> 
Moreover, it is known from Lemma 2.3.1 in Umar (1992a) that 
𝐹(𝛼𝛽) = 𝐹(𝛽𝛼). However, this is also not valid when the partial 
order relation is not totally ordered. In Example 2.4, we have 
𝐹(𝛾4𝛾7) = 𝐹(𝛾3) = {𝑎, 𝑐} ≠ 𝐹(𝛾7𝛾4) = 𝐹(𝛾4) = {𝑏, 𝑐} , 
𝐹(𝛾9𝛾7)< = 𝐹(𝛾10)< = {𝑏, 𝑐} ≠ 𝐹(𝛾7𝛾9)< = 𝐹(𝛾12)< =
{𝑎, 𝑐} , and 𝐹(𝛾2𝛾6)> = 𝐹(𝛾5)> = {𝑏, 𝑐} ≠ 𝐹(𝛾6𝛾2)< =
𝐹(𝛾2)< = {𝑎}. Therefore, in the pomonoid full transformations of a 
poset, we have the following cases in general: 

 𝐹(𝛼𝛽) ≠ 𝐹(𝛽𝛼) 
 𝐹(𝛼𝛽)< ≠ 𝐹(𝛽𝛼)< 
 𝐹(𝛼𝛽)> ≠ 𝐹(𝛽𝛼)> 

2.16. Theorem: 
Let 𝑋 = {𝑎1, 𝑎2, … , 𝑎𝑛, 𝑎}  be finite poset with the partial order 
relation ≤1. Then, any 𝛼 ∈ 𝑆− is an idempotent.  
Proof. Suppose that 𝛼 ∈ 𝑆− . From Lemma 2.5, we know that 𝑎 
𝑎𝛼 = 𝑎. For all 𝑎𝑖 , where 1 ≤ 𝑖 ≤ 𝑛, it is clear that 𝑎𝑖𝛼 ∈ {𝑎𝑖 , 𝑎}. 
When 𝑎𝑖𝛼 = 𝑎𝑖 , then 𝑎𝑖𝛼2 = 𝑎𝑖 . While when 𝑎𝑖𝛼 = 𝑎  then 
𝑎𝑖𝛼2 = 𝑎. Therefore, 𝛼 is an idempotent. ∎ 

By using a similar argument, we can obtain the following:  

2.17. Theorem: 
Let 𝑋 = {𝑎1, 𝑎2, … , 𝑎𝑛, 𝑎}  be a finite poset with the partial order 
relation ≤2. Then, any 𝛼 ∈ 𝑆+ is an idempotent.  
As known from Lemma 2.1.4 in Umar (1992a), 𝛼 is an idempotent if 
𝑓(𝛼) = 𝑛 − 1. However, this is not true in general for any partial 
order relation. Consider the element 𝛾8  in Example 2.4 𝛾8  is an 
idempotent and 𝑓(𝛾8) = 1 ≠ 2. 
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